A posteriori error estimators for the first-order least-squares finite element method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Goal-Oriented Local A Posteriori Error Estimators for H(div) Least-Squares Finite Element Methods

We propose a goal-oriented, local a posteriori error estimator for H(div) least-squares (LS) finite element methods. Our main interest is to develop an a posteriori error estimator for the flux approximation in a preassigned region of interest D ⊂ Ω. The estimator is obtained from the LS functional by scaling residuals with proper weight coefficients. The weight coefficients are given in terms ...

متن کامل

Least-squares Finite Element Methods for First-order Elliptic Systems

Least-squares principles use artificial " energy " functionals to provide a Rayleigh-Ritz-like setting for the finite element method. These function-als are defined in terms of PDE's residuals and are not unique. We show that viable methods result from reconciliation of a mathematical setting dictated by the norm-equivalence of least-squares functionals with practicality constraints dictated by...

متن کامل

A first-order system least-squares finite element method for the Poisson-Boltzmann equation

The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using this formulation, we propose a system that yields a tractable leas...

متن کامل

Error Analysis for Constrained First-Order System Least-Squares Finite-Element Methods

In this paper, a general error analysis is provided for finite-element discretizations of partial differential equations in a saddle-point form with divergence constraint. In particular, this extends upon the work of [J. H. Adler and P. S. Vassilevski, Springer Proc. Math. Statist. 45, Springer, New York, 2013, pp. 1–19], giving a general error estimate for finite-element problems augmented wit...

متن کامل

A posteriori error estimate for the mixed finite element method

A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2010

ISSN: 0377-0427

DOI: 10.1016/j.cam.2010.06.004